

Texture Refactor inTexture Refactor in
Ogre 2.1+Ogre 2.1+

by Matías Nazareth Goldbergby Matías Nazareth Goldberg

Texture RefactorTexture Refactor
● NEVER STALLNEVER STALL
● Automatic batchingAutomatic batching
● Explicit ResidencyExplicit Residency
● Managing ResidencyManaging Residency
● Async Texture UploadingAsync Texture Uploading
● Fix Fix RenderTargetRenderTarget ↔ HardwarePixelBuffer ↔ Texture mess. ↔ HardwarePixelBuffer ↔ Texture mess.
● Fix MSAA & MRT.Fix MSAA & MRT.

NEVER STALLNEVER STALL
● If a texture isn’t ready, show a 4x4 blank texture instead.If a texture isn’t ready, show a 4x4 blank texture instead.
● If the mips could be loaded first, show the first 64x64 mips.If the mips could be loaded first, show the first 64x64 mips.
● When the texture is done loading; it is modified so that its internal API When the texture is done loading; it is modified so that its internal API

object points to the actual texture object.object points to the actual texture object.

Stalls can only happen because of two reasons:Stalls can only happen because of two reasons:
● User requested to map for reading a texture that isn’t done loading User requested to map for reading a texture that isn’t done loading

(they can query whether it’s ready though)(they can query whether it’s ready though)
● User specifically requested to stall (e.g. level loading, user wants to User specifically requested to stall (e.g. level loading, user wants to

prevent showing a blank texture)prevent showing a blank texture)

Automatic batchingAutomatic batching
● Similar to what HlmsTextureManager does.Similar to what HlmsTextureManager does.
● Textures will have two modes:Textures will have two modes:

– AutomaticAutomatic

– ManualManual

Automatic batchingAutomatic batching

The Texture is exactly the type requested (e.g. 2D texture won't get a 2D The Texture is exactly the type requested (e.g. 2D texture won't get a 2D
array instead)array instead)

While a texture is transitioning to Resident, no 64x64 is used, but the 4x4 While a texture is transitioning to Resident, no 64x64 is used, but the 4x4
dummy one will be used instead (blank texture).dummy one will be used instead (blank texture).

Manual

Automatic batchingAutomatic batching

The Texture can be of a different type. Most normally we’ll treat 2D The Texture can be of a different type. Most normally we’ll treat 2D
textures internally as a slice to a 2D array texturetextures internally as a slice to a 2D array texture

Ogre will keep three API objects:Ogre will keep three API objects:
● A single 4x4 texture. Blank.A single 4x4 texture. Blank.
● An array of 2D textures of 64x64. One of its slices will contain the An array of 2D textures of 64x64. One of its slices will contain the

mips of the texture being loadedmips of the texture being loaded
● An array of 2D textures in which one of its slices the fully resident An array of 2D textures in which one of its slices the fully resident

texture will live.texture will live.

Each time we change the internal API object, HlmsDatablocks need to be Each time we change the internal API object, HlmsDatablocks need to be
notified so it can pack the arrays, update the slices to the GPU, and notified so it can pack the arrays, update the slices to the GPU, and
compute the texture hashes.compute the texture hashes.

● All of that (except updating slices to the GPU) can be done in a All of that (except updating slices to the GPU) can be done in a
worker thread, then all the values swapped w/ the Datablock’s.worker thread, then all the values swapped w/ the Datablock’s.

Automatic

 Explicit ResidencyExplicit Residency
● Current main problem is textures need to be parsed upfront.Current main problem is textures need to be parsed upfront.
● Blows loading time.Blows loading time.
● Can cause out of GPU memory errors.Can cause out of GPU memory errors.

 Explicit ResidencyExplicit Residency
● Current main problem is textures need to be parsed upfront.Current main problem is textures need to be parsed upfront.
● Blows loading time.Blows loading time.
● Can cause out of GPU memory errors.Can cause out of GPU memory errors.

3 MODES:

ResidentOn Sys. RAMOn storage

 Explicit ResidencyExplicit Residency
● Current main problem is textures need to be parsed upfront.Current main problem is textures need to be parsed upfront.
● Blows loading time.Blows loading time.
● Can cause out of GPU memory errors.Can cause out of GPU memory errors.

3 MODES:

ResidentOn Sys. RAMOn storage

● Texture is on storage (i.e. sourced from disk, from listener)Texture is on storage (i.e. sourced from disk, from listener)
● A 4x4 blank texture will be shown if A 4x4 blank texture will be shown if user attempts to use this Texture.user attempts to use this Texture.
● No memory is consumed.No memory is consumed.

 Explicit ResidencyExplicit Residency
● Current main problem is textures need to be parsed upfront.Current main problem is textures need to be parsed upfront.
● Blows loading time.Blows loading time.
● Can cause out of GPU memory errors.Can cause out of GPU memory errors.

3 MODES:

● Texture is on System RAM. Texture is on System RAM.
● If the texture is fully not resident, a 4x4 blank texture will be shown if If the texture is fully not resident, a 4x4 blank texture will be shown if

user attempts to use this Texture.user attempts to use this Texture.
● If the texture is transitioning to Resident, a 64x64 mip version of the If the texture is transitioning to Resident, a 64x64 mip version of the

texture will be shown. Starts blank, gets progressively filled. If not texture will be shown. Starts blank, gets progressively filled. If not
enough resources we may just display the 4x4 blank dummy.enough resources we may just display the 4x4 blank dummy.

● Explicit APIs (D3D12 / Vulkan) may use true OS residency funcs.Explicit APIs (D3D12 / Vulkan) may use true OS residency funcs.

ResidentOn Sys. RAMOn storage

 Explicit ResidencyExplicit Residency
● Current main problem is textures need to be parsed upfront.Current main problem is textures need to be parsed upfront.
● Blows loading time.Blows loading time.
● Can cause out of GPU memory errors.Can cause out of GPU memory errors.

3 MODES:

● It's loaded on VRAM.It's loaded on VRAM.
● Ready to be used by GPU.Ready to be used by GPU.
● May keep a copy on system RAM (user tweakable)May keep a copy on system RAM (user tweakable)
● Texture may transition directly from on storage to Resident.Texture may transition directly from on storage to Resident.
● However, Sys. RAM is a very attractive option for 64-bit editors (keep However, Sys. RAM is a very attractive option for 64-bit editors (keep

everything on Sys. RAM; load to GPU based on scene demands)everything on Sys. RAM; load to GPU based on scene demands)

ResidentOn Sys. RAMOn storage

Managing ResidencyManaging Residency
● User tells us priorities via a “rank” system.User tells us priorities via a “rank” system.

1.1. Must be loaded first. Must be kept always resident. Rank = 0Must be loaded first. Must be kept always resident. Rank = 0

2.2. Can be paged out if necessary. Rank > 0Can be paged out if necessary. Rank > 0

3.3. Naming convention: avoid “high” rank and “low” rank since it’s Naming convention: avoid “high” rank and “low” rank since it’s
confusing. Prefer “top rank” for high priority, and “bottom rank” for confusing. Prefer “top rank” for high priority, and “bottom rank” for
low priority. (better suggestions are welcomed!)low priority. (better suggestions are welcomed!)

● Every time a texture is used the frame count it was used in is saved. Every time a texture is used the frame count it was used in is saved.
We’ll refer to this as textures “getting touched”.We’ll refer to this as textures “getting touched”.

● The older a texture remains unused, the more likely it will be paged The older a texture remains unused, the more likely it will be paged
out (if memory thresholds are exceeded, and multiplied by rank).out (if memory thresholds are exceeded, and multiplied by rank).

● The minimum distance to camera could be saved as well. More The minimum distance to camera could be saved as well. More
distant textures may be paged out and replaced with 64x64 mips.distant textures may be paged out and replaced with 64x64 mips.

Managing ResidencyManaging Residency
● User tells Ogre how to deal paged out textures:User tells Ogre how to deal paged out textures:

– Textures should be saved to Sys. RAM or...Textures should be saved to Sys. RAM or...

– Discarded (will read from disk next time, speed will depend on Discarded (will read from disk next time, speed will depend on
whether OS still has a cached copy of the file) or...whether OS still has a cached copy of the file) or...

– Always keep a Sys. RAM copy to avoid readback.Always keep a Sys. RAM copy to avoid readback.

Managing ResidencyManaging Residency
● Keep list of commands in main thread to maintain order.Keep list of commands in main thread to maintain order.

– If user loads a texture, then uploads, then uploads some more, If user loads a texture, then uploads, then uploads some more,
they need to be ordered.they need to be ordered.

● Reading must be done via AsyncTickets. Mapping immediately will Reading must be done via AsyncTickets. Mapping immediately will
obviously stall.obviously stall.

Managing ResidencyManaging Residency
● Immutable textures (D3D11)Immutable textures (D3D11)

– Only Rank 0 textures can be made immutable (since paging them Only Rank 0 textures can be made immutable (since paging them
in/out would be problematic and must be done at per texture array in/out would be problematic and must be done at per texture array
granularity)granularity)

– User can specify it started a “loading screen” (i.e. not streaming) User can specify it started a “loading screen” (i.e. not streaming)
so that Ogre will defer Rank 0 textures upload until it fills all the so that Ogre will defer Rank 0 textures upload until it fills all the
slices for an array.slices for an array.

– Alternatively, user can specify a list of textures it wants to load as Alternatively, user can specify a list of textures it wants to load as
immutable into a single array.immutable into a single array.

Managing ResidencyManaging Residency
● How to touch textures to update distance to camera and frame used?How to touch textures to update distance to camera and frame used?

– 100.000 objects on scene w/ 5 textures each = 500.000 touches 100.000 objects on scene w/ 5 textures each = 500.000 touches
per frame!per frame!

● Touch HlmsDatablocks instead!Touch HlmsDatablocks instead!
● Worker thread will periodically iterate through all active datablocks in Worker thread will periodically iterate through all active datablocks in

scene checking for touched datablocks and updating its textures w/ scene checking for touched datablocks and updating its textures w/
the datablock’s touch.the datablock’s touch.

● This implies HlmsDatablocks and worker thread need to be sync.This implies HlmsDatablocks and worker thread need to be sync.

– No need for a mutex!No need for a mutex!

– When its textures change, HlmsDatablock can send a message When its textures change, HlmsDatablock can send a message
with an array w/ the new textures.with an array w/ the new textures.

– Worker thread will work with the old array until the message Worker thread will work with the old array until the message
arrives.arrives.

● What about textures without datablocks?What about textures without datablocks?

– You You needneed the Hlms to render. the Hlms to render.

– Hlms implementations may touch a texture if not part of datablockHlms implementations may touch a texture if not part of datablock

Async Texture Uploading Async Texture Uploading
● Async streaming done via worker thread.Async streaming done via worker thread.
● All textures always uploaded from worker thread unless specifically All textures always uploaded from worker thread unless specifically

requested (i.e. user-managed ones).requested (i.e. user-managed ones).
● Use double buffer scheme.Use double buffer scheme.
● While a texture is not yet resident, we show either the 64x64 or 4x4 While a texture is not yet resident, we show either the 64x64 or 4x4

texture. Until it's ready.texture. Until it's ready.
● Preallocate a bunch of StagingTextures for the worker thread.Preallocate a bunch of StagingTextures for the worker thread.

– On GLES2, use a CPU-side buffer to emulate lack of ptr mapping.On GLES2, use a CPU-side buffer to emulate lack of ptr mapping.

Async Texture Uploading Async Texture Uploading
● Async streaming done via worker thread.Async streaming done via worker thread.
● Use double buffer scheme.Use double buffer scheme.
● On GLES2, use a CPU-side buffer to emulate lack of ptr mapping.On GLES2, use a CPU-side buffer to emulate lack of ptr mapping.

Main Thread

1. Main thread maps big staging

textures.

2. Swap w/ worker thread.

3. Unmap & execute commands

4. Update textures (to point to

dummy/real texture API object)

5. Update HlmsDatablock’s

texture hash.

6. Repeat 1.

Worker thread

1. Swap w/ main thread

2. Iterate trough all

HlmsDatablocks

3. memcpy unpaged textures to

gpu ptr.

4. Create copy & other cmds for

main thread to execute

5. Repeat 1.

Async Texture UploadingAsync Texture Uploading
● Creating and destroying datablocks also needs to be sync’ed.Creating and destroying datablocks also needs to be sync’ed.

– Probably use message passing as well, and delay destruction Probably use message passing as well, and delay destruction
until worker thread informs he’s aware the datablock will be until worker thread informs he’s aware the datablock will be
removed.removed.

● Best place to touch a datablock is in Best place to touch a datablock is in
MovableObject::updateAllBoundsMovableObject::updateAllBounds

– Profiling says there’s spare cycles in that function :)Profiling says there’s spare cycles in that function :)

– Even if an object fails frustum test, it could be right behind us. Even if an object fails frustum test, it could be right behind us.
Distance to camera and knowing a texture belongs to a currently Distance to camera and knowing a texture belongs to a currently
active object is far more important.active object is far more important.

– Happens once per frame. Frustum tests can happen multiple Happens once per frame. Frustum tests can happen multiple
times.times.

RenderTarget ↔ HardwarePixelBuffer ↔ Texture.RenderTarget ↔ HardwarePixelBuffer ↔ Texture.
● Get rid of HardwarePixelBufferGet rid of HardwarePixelBuffer
● A 'texture' contains all mip levels, all faces/slices.A 'texture' contains all mip levels, all faces/slices.
● Use Metal's approach to render targets:Use Metal's approach to render targets:

– Textures to be used as RTT must be marked as such.Textures to be used as RTT must be marked as such.

– Create immutable RenderView:Create immutable RenderView:

– Can be attached N textures with mip/slice/face for colour.Can be attached N textures with mip/slice/face for colour.

– Can be attached a texture for depth.Can be attached a texture for depth.

– Can be attached a texture for stencil.Can be attached a texture for stencil.

– Depth can be sourced explicitly, or from a pool assigned at creation.Depth can be sourced explicitly, or from a pool assigned at creation.
● Previously the the depth was grabbed from pool on first use.Previously the the depth was grabbed from pool on first use.

– Trying to attach a non-marked RTT Texture to a RenderView throwsTrying to attach a non-marked RTT Texture to a RenderView throws
● Makes resource transitions (D3D12 / Vulkan) easier by dealing with Makes resource transitions (D3D12 / Vulkan) easier by dealing with

Textures all the time instead of having to deal with RenderTargets AND Textures all the time instead of having to deal with RenderTargets AND
Textures.Textures.

CompositorCompositor
● Textures are no longer declared as MRT. i.e. only one format.Textures are no longer declared as MRT. i.e. only one format.
● To do MRT, a RenderView can be created explicitly from script.To do MRT, a RenderView can be created explicitly from script.
● If the texture is used directly, a RenderView is implicitly created.If the texture is used directly, a RenderView is implicitly created.
● Support selecting array slices for 3D and 2D array textures.Support selecting array slices for 3D and 2D array textures.

Script examples:Script examples:

texture 2d texture0 640 480 PF_R8G8B8A8texture 2d texture0 640 480 PF_R8G8B8A8

texture 2d texture1 640 480 PF_R8G8B8A8texture 2d texture1 640 480 PF_R8G8B8A8

texture 2d texture2 640 480 PF_R8G8B8A8texture 2d texture2 640 480 PF_R8G8B8A8

renderview myMrt texture0 texture1 texture2renderview myMrt texture0 texture1 texture2

Matías Nazareth GoldbergMatías Nazareth Goldberg
@matiasgoldberg@matiasgoldberg

O-OGRE 3D ProjectO-OGRE 3D Project

https://twitter.com/matiasgoldberg

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22

